2004 Vol. 6, No. 5 795–798

Synthesis of a Polymer-Supported Anthracene and Its Application as a Dienophile Scavenger

Xiaoguang Lei and John A. Porco, Jr.*

Department of Chemistry and Center for Chemical Methodology and Library Development, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215

porco@chem.bu.edu

Received December 24, 2003

ABSTRACT

A polymer-supported anthracene has been prepared and employed as a dienophile scavenger in Diels-Alder cycloadditions.

Polymer-supported reagents and scavengers have been increasingly employed in solution-phase parallel synthesis for the preparation of chemical libraries. Numerous polymer-supported scavenger resins are currently available, most of which are either nucleophilic or electrophilic. During the course of a library synthesis project, we required a scavenger for selective removal of maleimides and other dienophiles in the presence of other electrophilic functionality on a target scaffold. On the basis of our work in the sequestration of anthracene-tagged substrates with a polymer-supported maleimide, we targeted a polymer-supported anthracene as a chemoselective dienophile scavenger. Herein, we report

the synthesis of a polymer-supported anthracene and its use as a scavenger for dienophiles in Diels—Alder cycloaddition.⁶

Our initial synthesis of a polymer-supported anthracene 2 is shown in Scheme 1. Acylation of 9-anthracenemethanol with succinic anhydride afforded anthracene acid 1,7 which was coupled to commercially available aminomethyl polystyrene resin (PS-NH₂, Argonaut Technologies, 1.52 mmol/g) to provide polymer-bound anthracene 2. The scavenging capacity of 2 was determined by thermolysis with *N*-(4-bromophenyl)maleimide (3.0 equiv) in toluene at 70 °C (24 h). The loading of the resulting cycloadduct resin 3 was calculated to be 0.84 mmol/g by elemental analysis (Br). The loading of scavenger resin 2 was back-calculated to be 1.07 mmol/g, which was in agreement with the theoretical loading.

^{(1) (}a) Booth, R. J.; Hodges, J. C. Acc. Chem. Res. 1999, 32, 18–26. (b) Parlow, J. J.; Devraj, R. V.; South, M. S. Curr. Opin. Chem. Biol. 1999, 3, 320–336. (c) Thompson, L. A. Curr. Opin. Chem. Biol. 2000, 4, 324–337. (d) Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach, A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perkin Trans. 1 2000, 3815–4195. (e) Guillier, F.; Orain, D.; Bradley, M. Chem. Rev. 2000, 100, 2091–2157.

⁽²⁾ For a review on polymer-supported scavenger resins, see: Eames, J.; Watkinson, M. Eur. J. Org. Chem. 2001, 1213–1224.

⁽³⁾ For recent studies on the use of fluorous dienophiles as diene scavengers, see: Werner, S.; Curran, D. P. *Org. Lett.* **2003**, *5*, 3293–3296. (4) (a) Wang, X.; Parlow, J. J.; Porco, J. A., Jr. *Org. Lett.* **2000**, *2*, 3509–3512. (b) Lan, P.; Porco, J. A., Jr.; South, M. S.; Parlow, J. J. *J. Comb. Chem.* **2003**, *5*, 660–669. (c) Lan, P.; Berta, D.; Porco, J. A., Jr.; South, M. S.; Parlow, J. J. *J. Org. Chem.* **2003**, 68, 9678–9686. For related studies, see: (d) Li, X.; Abell, C.; Ladlow, M. *J. Org. Chem.* **2003**, 68, 4189–4194. (e) Andrews, S. P.; Ladlow, M. *J. Org. Chem.* **2003**, 68, 5525–5533.

⁽⁵⁾ Recently, interbead Diels—Alder reactions of a polymer-supported anthracene and maleimide were reported; see: Thomas, I. P.; Ramsden, J. A.; Kovacs, T. Z.; Brown, J. M. *Chem. Commun.* **1999**, 1507–1508.

⁽⁶⁾ For library synthesis employing Diels—Alder reactions, see: (a) Boger, D. L. *PCT Int. Appl.* **1996**, WO 9603424. (b) Wendeborn, S.; Mesmaeker, A. D.; Brill, W. K.-D. *Synlett.* **1998**, 8, 865—868. (c) Stavenger, R. A.; Schreiber, S. L. *Angew. Chem., Int. Ed.* **2001**, 40, 3417—3421. (d) von Wangelin, A. J.; Neumann, H.; Goerdes, D.; Spannenberg, A.; Beller, M. *Org. Lett.* **2001**, 3, 2895—2898. (e) Graven, A.; St. Hilaire, P. M.; Sanderson, S. J.; Mottram, J. C.; Coombs, G. H.; Meldal, M. *J. Comb. Chem.* **2001**, 3, 441—452. (f) Kwon, O.; Park, S. B.; Schreiber, S. L. *J. Am. Chem. Soc.* **2002**, 124, 13402—13404.

⁽⁷⁾ For ring-opening of glutaric anhydride with 9-anthracenemethanol, see: Browning, J. L.; Nelson, D. L. *J. Membr. Biol.* **1979**, *49*, 75–103.

Scheme 1. Synthesis of a First-Generation Polymer-Supported
Anthracene 2

Although resin **2** can efficiently scavenge *N*-phenylmaleimide using microwave irradiation (150 °C, 20 min),⁸ 9-anthracenemethanol was also observed as a byproduct. The thermal instability of this resin may be derived from the properties of the 9-anthrylmethyl system⁹ or intramolecular participation by the amide nitrogen in ester hydrolysis.¹⁰ In an effort to develop a more stable resin attachment, we prepared a scavenger resin lacking both the 9-anthrylmethyl ester and succinate spacer (Scheme 2). Second-generation

Scheme 2. Synthesis of a Second-Generation Polymer-Supported Anthracene **5**

resin **5** was prepared by treatment of aminomethyl polystyrene with readily available isopropylidene malonate **4**^{4e} in toluene (100 °C, 12 h).¹¹ The dienophile scavenging capacity of resin **5** was determined to be 1.09 mmol/g by HPLC analysis using *N*-phenylmaleimide as a dienophile and 4-biphenylmethanol as an internal standard.

(9) (a) Stewart, F. H. C. Aust. J. Chem. **1965**, 18, 1699–1703. (b) Kornblum, N.; Scott, A. J. Am. Chem. Soc. **1974**, 96, 590–591. (c) Kornblum, N.; Scott, A. J. Org. Chem. **1977**, 42, 399–400.

(10) Hibbert, F.; Sellens, R. J. J. Chem. Soc., Perkin Trans. 2 1988, 3, 399-402.

(11) For acylation of Wang resin with Meldrum's acid, see: (a) Hamper, B. C.; Kolodziej, S. A.; Scates, A. M. *Tetrahedron Lett.* **1998**, *39*, 2047—2050. (b) For reaction of isopropylidenemalonates with O- and N-nucleophiles, see: Zitsane, D. R.; Ravinya, I. T.; Riikure, I. A.; Tetere, Z. F.; Gudrinietse, E. Y.; Kalei, U. O. *Russ. J. Org. Chem.* **2000**, *36*, 496—501.

Table 1. Dienophile Sequestration Using Anthracene Resin $5^{a,b}$

entry	dienophile	thermal (A)	microwave (B)	
1 ^a	O N O	4h	20 min	
2^a	O NO	4 h	20 min	
3 ^a	Bn N Me Me 6	8 h	30 min	
4 ^a	Ph CO ₂ Me 0 N 0 7	5 h	25 min	
5 ^a	O N=N	3 h	15 min	
6 ^a	MeO ₂ c CO ₂ Me	8 h	30 min	
7^b	EtO ₂ C-==-CO ₂ Et	12 h	35 min	
8^b	0<0>0	12 h	35 min	
9^b	Eto OEt	12 h	35 min	
10^b		16 h 60 %	40 min 71 %	

^a Conditions: 2.0 equiv of resin 5 (0.1 M in dienophile). (A) Thermal reactions were conducted using the MiniBlock XT parallel solution-phase synthesizer, toluene, 100 °C. (B) Microwave-mediated reactions were conducted using the CEM Discover Microwave System, 1,2-dichloroethane (DCE), 150 °C, 150W. ^b Performed with 3.0 equiv of resin 5 (0.07 M in dienophile).

We next examined the reactivity of **5** as a scavenger for a series of dienophiles (Table 1). Resin **5** (2–3 equiv.) was incubated with a number of dienophiles¹² using both thermal and microwave heating. TLC and NMR analysis showed that reactive dienophiles, including maleimides and *N*-phenyl-

796 Org. Lett., Vol. 6, No. 5, 2004

⁽⁸⁾ For recent reviews of reactions accelerated by microwave-assisted heating, see: (a) Lidstrom, P.; Westman, J.; Anthony, L. Combin. Chem. High Throughput Screen. 2002, 5, 441–458. (b) Lew, A.; Krutzik, P. O.; Hart, M. E.; Chamberlin, A. R. J. Comb. Chem. 2002, 4, 95–105. (c) Blackwell, H. E. Org. Biomol. Chem. 2003, 1, 1251–1255. For recent examples of [4 + 2] Diels-Alder reactions accelerated by microwave-assisted heating, see: (d) Sridhar, M.; Krishna, K. L.; Srinivas, K.; Rao, J. M. Tetrahedron Lett. 1998, 39, 6529–6532. (e) Jankowski, C. K.; LeClair, G.; Belanger, J. M. R.; Pare, J. R. J.; Van Calsteren, M. Can. J. Chem. 2001, 79, 1906–1909. (f) Diaz-Ortiz, A.I; De la Hoz, A.; Moreno, A.; Prieto, P.; Leon, R.; Herrero, M. A. Synlett 2002, 12, 2037–2038.

triazolinedione (cf. entries 1–5), were efficiently scavenged (>99% conversion by ¹H NMR analysis) in less than 8 h (thermolysis) or 30 min (microwave heating). Other dienophiles (entries 6 to 9) were also scavenged with comparable efficiency. 1,4-Naphthoquinone (entry 10) was also evaluated as a representive unreactive dienophile. HPLC analysis showed that the conversion was 60% using thermal heating (16 h, 100 °C, toluene) and 71% using microwave heating (40 min, 150 °C, DCE). Longer reaction times or use of Lewis acids (e.g., Sc(OTf)₃)¹³ led to the production of byproducts from the resin.

With dienophile scavenger resin **5** in hand, we initiated the preparation of natural product-like compounds using Diels—Alder cycloaddition. A number of prenylflavonoid Diels—Alder natural products have been isolated from the mulberry tree and related plants. For example, kuwanon G ($\mathbf{8}$) and multicaulisin ($\mathbf{9}$) are [$\mathbf{4} + \mathbf{2}$] Diels—Alder cycloaddition products between prenylflavonoid dienes and hydroxychalcones (Figure 1). The interesting structural

Figure 1. Prenylflavonoid Diels-Alder natural products.

diversity of these compounds prompted us to prepare the corresponding flavonoid dienes for use in [4 + 2] Diels–Alder cycloaddition with reactive dienophiles.¹⁷

Model flavonoid dienes 10 and 11 were efficiently prepared using modified Suzuki coupling 18 of iodides 12 and 13 with dienyl boronate 14 (Scheme 3). 19 Treatment of 10

Scheme 3. Preparation of Model Flavonoid Dienes

KF, dioxane, 90 °C, 12h

85 %

and **11** with *N*-(4-bromophenyl)maleimide (2.0 equiv) in CDCl₃ (65 °C, 4 h) cleanly afforded [4 + 2] Diels—Alder cycloaddition products **15** and **16** (Scheme 4). Interestingly,

Scheme 4. [4 + 2] Diels—Alder Cycloaddition and Relative Stereochemistry Assignment

cycloadduct **15** exhibits restricted rotation about the aryl—cyclohexenyl bond as evidenced by severe broadening of the 1 H NMR signals at room temperature. 20 When the sample was heated to 80 °C in DMSO- d_6 , sharp peaks were obtained. NOE studies (cf. Scheme 4) indicated that both **15** and **16** were endo cycloaddition products.

Finally, we prepared a number of flavonoid cycloadducts by treatment of dienes **10** and **11** with four additional dienophiles (Table 2). Due to observed retro Diels—Alder reactions of *N*-phenyltriazolinedione cycloadducts using microwave conditions,²¹ compounds **17** and **21** (entries 1 and 5) were synthesized by [4 + 2] cycloaddition and dienophile sequestration with resin **5** using thermal heating (DCE, 80 °C). Other compounds were prepared using microwave heating (150 °C, 150 W, DCE). For both steps, yields and HPLC purities were determined from the crude reaction mixtures without further purification.²²

Org. Lett., Vol. 6, No. 5, 2004

⁽¹²⁾ Preparation of 6: (a) Corrie, J. E. T.; Moore, M. H.; Wilson, G. D. J. Chem. Soc., Perkin Trans. 1 1996, 8, 777–781. Preparation of 7: (b) Reddy, P. Y.; Kondo, S.; Toru, T.; Ueno, Y. J. Org. Chem. 1997, 62, 2652–2654

⁽¹³⁾ For Diels—Alder cycloaddition of anthracene with *p*-benzoquinone using Sc(OTf)₃ as catalyst, see: Fukuzumi, S.; Ohkubo, K.; Okamoto, T. *J. Am. Chem. Soc.* **2002**, *124*, 14147—14155.

⁽¹⁴⁾ Nomura, T. Pure Appl. Chem. 1999, 71, 1115-1118.

^{(15) (}a) Nomura, T.; Fukai, T. *Chem. Pharm. Bull.* **1980**, 28, 2548–2552. (b) Nomura, T.; Fukai, T.; Narita, T. *Heterocycles* **1980**, *14*, 1493–1951.

⁽¹⁶⁾ Ferrari, F.; Delle Monache, F.; Suarez, A. I.; Compagnone, R. S. Fitoterapia 2000, 71, 213–215.

⁽¹⁷⁾ For model Diels—Alder reactions of *trans*-chalcone and 3-methyl1-phenyl-1,3-butadiene, see: Nomura, T.; Fukai, T.; Narita, T.; Terada, S.; Uzawa, J.; Iitaka, Y. *Tetrahedron Lett.* **1981**, *22*, 2195–2198.

⁽¹⁸⁾ Littke, A. F.; Dai, C.; Fu, G. C. *J. Am. Chem. Soc.* **2000**, *122*, 4020–4028

⁽¹⁹⁾ Preparation of **12**: (a) Chen, F. C.; Chang, C. T.; Chen, T. S. J. Org. Chem. **1962**, 27, 85–87. (b) Zhang, F. J.; Huang, Q. C.; Lin, G. Q. J. Org. Chem. **1995**, 60, 6427–6430. Preparation of **13**: (c) Zembower, D. E.; Zhang, H. J. Org. Chem. **1998**, 63, 9300–9305. Preparation of **14**: (d) Matsumoto, Y.; Naito, M.; Hayashi, T. Organometallics **1992**, 11, 2732–2734.

⁽²⁰⁾ Fletcher, A. C.; Porter, L. J.; Haslam, E.; Gupta, R. K. *J. Chem. Soc., Perkin. Trans. 1* **1977**, 1628–1637.

⁽²¹⁾ For retro-Diels—Alder reactions of triazolinedione cycloadducts, see: Ashkenazi, P.; Ginsburg, D.; Macfarlane, R. D.; Oertling, W. A.; McNeal, C. J.; Wamhoff, H.; Wald, K. M. *Nouv. J. Chim.* **1983**, 7, 213-218

⁽²²⁾ For cycloadduct **17**, a slightly reduced purity was likely due to addition of a second equivalent of *N*-phenyltriazolinedione as evidenced by HPLC-MS analysis. See Supporting Information for details.

Table 2. Syntheses of Flavonoid Diels-Alder Cycloadducts

entry	product	yield (%)	purity ^c (%)	entry	product	yield (%)	purity ^c (%)
1 ^a	MeO Me OMe	92	91 (80)	5 ^a	OMe O OMe O	90	95 (95)
2^b	Me NH H OMe OMe OMe OMe OMe	94	(84) ^d >99 (99)	6^b	Me O OMe O OMe O Me O Me	95	99 (99)
3^b	Eto H Me OMe OMe	96	99 (99)	7^b	EIO MeO OMe OMe OMe OMe OMe OMe OMe OMe OM	94	99 (94)
4^b	MeO OMe O 20	95	>99 (95)	8^b	OMe	93	>99 (94)

^a Conditions: (A) 2.0 equiv of dienophile, 80 °C, DCE, 3 h. (B) 2.0 equiv of resin 5, 80 °C, DCE, 3 h. ^b Conditions: (A) 150 °C, microwave heating, DCE, 150W, 10 min. (B) 2.0 equiv of resin 5, 150 °C, microwave heating, DCE, 150W, 20 min. ^c HPLC analysis: CH₃CN/H₂O 10−95% (10 min). Purities are reported using ELS detection (UV detection, 214 nm in parentheses). ^d HPLC analysis before the scavenging step: CH₃CN/H₂O 10−95% (10 min). Purity reported using UV detection, 214 nm (see Supporting Information for details).

In summary, we have developed a thermally stable polymer-supported anthracene for use as a dienophile scavenger. The scavenger resin has been employed to sequester reactive dienophiles (e.g., maleimides) in Diels—Alder cycloadditions to prepare natural product-like compounds. Further studies on the use of dienophile scavengers to produce complex chemical libraries are in progress and will be reported in due course.

Acknowledgment. Financial support from the NIGMS CMLD initiative (P50 GM067041) is gratefully acknowl-

edged. We thank Prof. John Snyder, Dr. Aaron Beeler, and Mr. Ruichao Shen (Boston University) for helpful discussions, CEM Corporation (Matthews, NC) for assistance with microwave equipment, and Metter-Toledo AutoChem (Millersville, MD) for assistance with reaction blocks.

Supporting Information Available: Experimental procedures and characterization data for all new compounds and materials. This material is available free of charge via the Internet at http://pubs.acs.org.

OL036502+

798 Org. Lett., Vol. 6, No. 5, 2004